|
|
View previous topic :: View next topic |
Author |
Message |
guy
Joined: 21 Oct 2005 Posts: 297
|
|
Posted: Sat Apr 25, 2020 12:26 pm |
|
|
See my previous answer from May 29, 2017 10:48 am. |
|
|
PCM programmer
Joined: 06 Sep 2003 Posts: 21708
|
|
|
vmetal2020
Joined: 25 Apr 2020 Posts: 3
|
|
Posted: Wed Apr 29, 2020 11:44 am |
|
|
Yes I know. I have checked the continuity between PIC and CC1101 and it is ok. Do you think that the problem is a bad connection of GDO0? |
|
|
guy
Joined: 21 Oct 2005 Posts: 297
|
|
Posted: Wed Apr 29, 2020 2:24 pm |
|
|
vmetal2020 wrote: | Yes I know. I have checked the continuity between PIC and CC1101 and it is ok. Do you think that the problem is a bad connection of GDO0? |
The documentation I made in the code is wrong - there is a mixup between GDO0 and GDO2.
Code: | // Wait for GDO0 to be set -> sync transmitted
while(!input(GDO2)) { |
Check GDO2 with an oscilloscope and see if it goes high. If it does then check your code to setup GDO2 correctly (set to input, digital, etc.)
Sorry I can't check your code for you... |
|
|
vmetal2020
Joined: 25 Apr 2020 Posts: 3
|
|
Posted: Thu Apr 30, 2020 8:36 am |
|
|
I got it!, I hadn't written the configuration of output pins.
Thank you.
I attached my code for help other person.
Code: |
#include <pruebaccs_sensorpuerta.h>
#define LED PIN_A3
// manual/software SPI
#define MOSI PIN_C5
#define MISO PIN_C4
#define SCK PIN_C3
#define GDO2 PIN_B0// unused
#define CS PIN_A5
#define GDO0 PIN_B1
#DEFINE BUF_SIZE 100
byte txBuffer[BUF_SIZE];
byte rxBuffer[BUF_SIZE];
byte rxPacketLen=0;
#define WRITE_BURST 0x40
#define READ_SINGLE 0x80
#define READ_BURST 0xC0
// Defines
#define CRC_OK 0x80
#define RSSI 0
#define LQI 1
#define BYTES_IN_RXFIFO 0x7F
// CCxxxx STROBE, CONTROL AND STATUS REGSITERS
#define CCxxx0_IOCFG2 0x00 // GDO2 output pin configuration
#define CCxxx0_IOCFG1 0x01 // GDO1 output pin configuration
#define CCxxx0_IOCFG0 0x02 // GDO0 output pin configuration
#define CCxxx0_FIFOTHR 0x03 // RX FIFO and TX FIFO thresholds
#define CCxxx0_SYNC1 0x04 // Sync word, high int8
#define CCxxx0_SYNC0 0x05 // Sync word, low int8
#define CCxxx0_PKTLEN 0x06 // Packet length
#define CCxxx0_PKTCTRL1 0x07 // Packet automation control
#define CCxxx0_PKTCTRL0 0x08 // Packet automation control
#define CCxxx0_ADDR 0x09 // Device address
#define CCxxx0_CHANNR 0x0A // Channel number
#define CCxxx0_FSCTRL1 0x0B // Frequency synthesizer control
#define CCxxx0_FSCTRL0 0x0C // Frequency synthesizer control
#define CCxxx0_FREQ2 0x0D // Frequency control word, high int8
#define CCxxx0_FREQ1 0x0E // Frequency control word, middle int8
#define CCxxx0_FREQ0 0x0F // Frequency control word, low int8
#define CCxxx0_MDMCFG4 0x10 // Modem configuration
#define CCxxx0_MDMCFG3 0x11 // Modem configuration
#define CCxxx0_MDMCFG2 0x12 // Modem configuration
#define CCxxx0_MDMCFG1 0x13 // Modem configuration
#define CCxxx0_MDMCFG0 0x14 // Modem configuration
#define CCxxx0_DEVIATN 0x15 // Modem deviation setting
#define CCxxx0_MCSM2 0x16 // Main Radio Control State Machine configuration
#define CCxxx0_MCSM1 0x17 // Main Radio Control State Machine configuration
#define CCxxx0_MCSM0 0x18 // Main Radio Control State Machine configuration
#define CCxxx0_FOCCFG 0x19 // Frequency Offset Compensation configuration
#define CCxxx0_BSCFG 0x1A // Bit Synchronization configuration
#define CCxxx0_AGCCTRL2 0x1B // AGC control
#define CCxxx0_AGCCTRL1 0x1C // AGC control
#define CCxxx0_AGCCTRL0 0x1D // AGC control
#define CCxxx0_WOREVT1 0x1E // High int8 Event 0 timeout
#define CCxxx0_WOREVT0 0x1F // Low int8 Event 0 timeout
#define CCxxx0_WORCTRL 0x20 // Wake On Radio control
#define CCxxx0_FREND1 0x21 // Front end RX configuration
#define CCxxx0_FREND0 0x22 // Front end TX configuration
#define CCxxx0_FSCAL3 0x23 // Frequency synthesizer calibration
#define CCxxx0_FSCAL2 0x24 // Frequency synthesizer calibration
#define CCxxx0_FSCAL1 0x25 // Frequency synthesizer calibration
#define CCxxx0_FSCAL0 0x26 // Frequency synthesizer calibration
#define CCxxx0_RCCTRL1 0x27 // RC oscillator configuration
#define CCxxx0_RCCTRL0 0x28 // RC oscillator configuration
#define CCxxx0_FSTEST 0x29 // Frequency synthesizer calibration control
#define CCxxx0_PTEST 0x2A // Production test
#define CCxxx0_AGCTEST 0x2B // AGC test
#define CCxxx0_TEST2 0x2C // Various test settings
#define CCxxx0_TEST1 0x2D // Various test settings
#define CCxxx0_TEST0 0x2E // Various test settings
// Strobe commands
#define CCxxx0_SRES 0x30 // Reset chip.
#define CCxxx0_SFSTXON 0x31 // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL = 1).
// If in RX / TX: Go to a wait state where only the synthesizer is
// Running (for quick RX / TX turnaround).
#define CCxxx0_SXOFF 0x32 // Turn off crystal oscillator.
#define CCxxx0_SCAL 0x33 // Calibrate frequency synthesizer and turn it off
// (Enables quick start).
#define CCxxx0_SRX 0x34 // Enable RX. Perform calibration first if coming from IDLE and
// MCSM0.FS_AUTOCAL = 1.
#define CCxxx0_STX 0x35 // In IDLE state: Enable TX. Perform calibration first if
// MCSM0.FS_AUTOCAL = 1. If in RX state and CCA is enabled:
// Only go to TX if channel is clear.
#define CCxxx0_SIDLE 0x36 // Exit RX / TX, turn off frequency synthesizer and exit
// Wake-On-Radio mode if applicable.
#define CCxxx0_SAFC 0x37 // Perform AFC adjustment of the frequency synthesizer
#define CCxxx0_SWOR 0x38 // Start automatic RX polling sequence (Wake-on-Radio)
#define CCxxx0_SPWD 0x39 // Enter power down mode when CSn goes high.
#define CCxxx0_SFRX 0x3A // Flush the RX FIFO buffer.
#define CCxxx0_SFTX 0x3B // Flush the TX FIFO buffer.
#define CCxxx0_SWORRST 0x3C // Reset real time clock.
#define CCxxx0_SNOP 0x3D // No operation. May be used to pad strobe commands to two
// int8s for simpler software.
#define CCxxx0_PARTNUM 0x30
#define CCxxx0_VERSION 0x31
#define CCxxx0_FREQEST 0x32
#define CCxxx0_LQI 0x33
#define CCxxx0_RSSI 0x34
#define CCxxx0_MARCSTATE 0x35
#define CCxxx0_WORTIME1 0x36
#define CCxxx0_WORTIME0 0x37
#define CCxxx0_PKTSTATUS 0x38
#define CCxxx0_VCO_VC_DAC 0x39
#define CCxxx0_TXBYTES 0x3A
#define CCxxx0_RXBYTES 0x3B
#define CCxxx0_PATABLE 0x3E
#define CCxxx0_TXFIFO 0x3F
#define CCxxx0_RXFIFO 0x3F
/////////////////////////////////////
//Configure the CC1101 module by reading or writing to configuration
//register through SPI interface. SPI serial interface consists of four lines:
//MOSI: Master Output Slave Input (master write)
//MISO: Master Input Slave Output (master read)
//SCK: Serial clock signal, controlled by master
//CSN: chip select signal, low active
// <SPI write and read Code>
int8 SpiTxRxByte (int8 dat) {
int8 i, temp;
temp = 0;
output_low(SCK); //SCK = 0;
for (i = 0; i <8; i ++) {
if (dat & 0x80) output_high(MOSI);
else output_low(MOSI);
dat <<= 1;
delay_us(1);
output_high(SCK);
temp <<= 1;
if (input(MISO)) temp ++;
delay_us(1);
output_low(SCK);
}
return temp;
}
/////////////////////////////
// Configure the CC1101 module through the SPI interface, reading and writing
//into configuration register>
int8 halSpiReadReg (int8 addr) {
int8 temp, value;
temp = addr | READ_SINGLE; // read register command
output_low(CS);
while (input(MISO));
SpiTxRxByte (temp);
value = SpiTxRxByte (0);
output_high(CS);
return value;
}
/////////////////////////////
//void halSpiWriteReg (int8 addr, int8 value)
void halRfWriteReg (int8 addr, int8 value) {
output_low(CS);
while (input(MISO));
SpiTxRxByte (addr); // write address
SpiTxRxByte (value); // write configuration
output_high(CS);
}
/////////////////////////////
void halSpiWriteBurstReg(BYTE addr, BYTE count) {
INT8 i;
output_low(CS);
while (input(MISO));
SpiTxRxByte(addr | WRITE_BURST);
delay_us(10);
for (i = 0; i < count; i++) {
SpiTxRxByte(txBuffer[i]);
//SPI_WAIT();
delay_us(10); //???
}
output_high(CS);
}
////////////////////////////////
void halSpiStrobe(BYTE strobe) {
output_low(CS);
while (input(MISO));
SpiTxRxByte (strobe); // write address
output_high(CS);
}
////////////////////////////////
BYTE halSpiReadStatus(BYTE addr) {
INT8 x;
output_low(CS);
while (input(MISO));
SpiTxRxByte (addr|READ_BURST);
// SPI_WAIT
x=SpiTxRxByte (0);
// SPI_WAIT
output_high(CS);
return x;
}
/////////////////////////////////////
void halSpiReadBurstReg(BYTE addr, BYTE count) {
INT8 i;
byte x;
output_low(CS);
while (input(MISO));
SpiTxRxByte (addr|READ_BURST);
// SPI_WAIT();
if(count>(BUF_SIZE-5)) count=BUF_SIZE-5;
for (i = 0; i < count; i++) {
x=SpiTxRxByte (0);
//SPI_WAIT();
rxBuffer[i] = x;
}
output_high(CS);
}
/////////////////////////////////////
// Configure CC1101
void halRfWriteRfSettings (void) {
//
// Rf settings for CC1101
//
// export from SmartRF studio
// 433.92MHz 1.2Kbaud, 10dB
// GFSK, dev. 5KHz, RX filter BW 58KHz
halRfWriteReg(CCxxx0_IOCFG0,0x06); //GDO0 Output Pin Configuration
halRfWriteReg(CCxxx0_FIFOTHR,0x47); //RX FIFO and TX FIFO Thresholds
halRfWriteReg(CCxxx0_SYNC1,0x7A); //Sync Word, High Byte
halRfWriteReg(CCxxx0_SYNC0,0x0E); //Sync Word, Low Byte
halRfWriteReg(CCxxx0_PKTLEN,0x14); //Packet Length
halRfWriteReg(CCxxx0_PKTCTRL0,0x05);//Packet Automation Control
halRfWriteReg(CCxxx0_FSCTRL1,0x06); //Frequency Synthesizer Control
halRfWriteReg(CCxxx0_FREQ2,0x10); //Frequency Control Word, High Byte
halRfWriteReg(CCxxx0_FREQ1,0xB0); //Frequency Control Word, Middle Byte
halRfWriteReg(CCxxx0_FREQ0,0x73); //Frequency Control Word, Low Byte
halRfWriteReg(CCxxx0_MDMCFG4,0xF5); //Modem Configuration
halRfWriteReg(CCxxx0_MDMCFG3,0x83); //Modem Configuration
halRfWriteReg(CCxxx0_MDMCFG2,0x12); //Modem Configuration
halRfWriteReg(CCxxx0_MDMCFG1,0x21); //Modem Configuration
halRfWriteReg(CCxxx0_DEVIATN,0x15); //Modem Deviation Setting
halRfWriteReg(CCxxx0_MCSM0,0x18); //Main Radio Control State Machine Configuration
halRfWriteReg(CCxxx0_FOCCFG,0x16); //Frequency Offset Compensation Configuration
halRfWriteReg(CCxxx0_AGCCTRL2,0x43);//AGC Control
halRfWriteReg(CCxxx0_AGCCTRL1,0x49);//AGC Control
halRfWriteReg(CCxxx0_WORCTRL,0xFB); //Wake On Radio Control
halRfWriteReg(CCxxx0_FSCAL3,0xE9); //Frequency Synthesizer Calibration
halRfWriteReg(CCxxx0_FSCAL2,0x2A); //Frequency Synthesizer Calibration
halRfWriteReg(CCxxx0_FSCAL1,0x00); //Frequency Synthesizer Calibration
halRfWriteReg(CCxxx0_FSCAL0,0x1F); //Frequency Synthesizer Calibration
halRfWriteReg(CCxxx0_TEST2,0x81); //Various Test Settings
halRfWriteReg(CCxxx0_TEST1,0x35); //Various Test Settings
halRfWriteReg(CCxxx0_TEST0,0x09); //Various Test Settings
halRfWriteReg(CCxxx0_PATABLE,0xC0); // 10dB
//halRfWriteReg(CCxxx0_PATABLE,0x60); // 0dB
}
/////////////////////////////////////////
void halRfSendPacket (int8 size) {
// put data in txBuffer
halRfWriteReg (CCxxx0_TXFIFO, size);
halSpiWriteBurstReg (CCxxx0_TXFIFO, size); // write the data to be sent
halSpiStrobe (CCxxx0_STX); // send data into the transmit mode
// Wait for GDO0 to be set -> sync transmitted
while(!input(GDO0)) {
//halSpiStrobe(CCxxx0_SNOP); //possible
}
// Wait for GDO0 to be cleared -> end of packet
while(input(GDO0)) {
// halSpiStrobe(CCxxx0_SNOP); interrupts
}
halSpiStrobe (CCxxx0_SFTX);
}
//////////////////////////////////////////
int8 halRfReceivePacket () {
// before calling set rxPacketLen!
// data will be stored in rxBuffer and rxPacketLen changed accordingly
INT8 status [2];
INT8 packetLength;
byte tmp0,tmp1;
halSpiStrobe (CCxxx0_SRX); // entry into the receiving state
while (! input(GDO0));
while (input(GDO0));
if ((halSpiReadStatus (CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) // If the pick is not 0 bytes
{
packetLength = halSpiReadReg (CCxxx0_RXFIFO);
if (packetLength <= rxPacketLen) {
halSpiReadBurstReg (CCxxx0_RXFIFO, packetLength);
rxPacketLen = packetLength; // receive data to modify the length of the current data
// Read the 2 appended status bytes (status [0] = RSSI, status [1] = LQI)
tmp0=rxBuffer[0];
tmp1=rxBuffer[1];
halSpiReadBurstReg (CCxxx0_RXFIFO, 2); // read CRC, bit
halSpiStrobe (CCxxx0_SFRX); // receive buffer wash
status[0]=rxBuffer[0];
status[1]=rxBuffer[1];
// restore rxBuffer data:
rxBuffer[0]=tmp0;
rxBuffer[1]=tmp1;
return (status[1] & CRC_OK); // return successfully received if the verification is successful
}
else
{
rxPacketLen = packetLength;
halSpiStrobe (CCxxx0_SFRX); // receive buffer wash
return 0;
}
}
else
return 0;
}
/////////////////////////////////////
/////////////////////////////////////
/////////////////////////////////////
void main() {
//printf("INICIO\r\n");
//delay_ms(1000);
byte i,bp;
// issue manual POR sequence and SRES:
//restart_wdt();
output_high(LED);
output_high(PIN_A2);
delay_ms(400);
output_high(CS);
output_high(SCK);
output_low(MOSI);
// strobe CS low/high
delay_us(10);
output_low(CS);
delay_us(10);
output_high(CS);
output_low(SCK); // MY
delay_us(40);
output_low(CS);
delay_us(10);
// wait for CHIP_RDYn :
while (input(MISO));
// SRES:
delay_us(10);
halSpiStrobe(CCxxx0_SRES);
delay_ms(1);
halRfWriteRfSettings();
// i=halSpiReadReg(CCxxx0_FREQ0); for write-read test
delay_ms(1);
// TX:
for(i=0;i<10;i++) {
txBuffer[i]=i+0x40;
}
//printf("2\r\n");
while(1) {
delay_ms(1000);
//printf("3\r\n");
halRfSendPacket(10);
//printf("Despues del sendpacket\r\n");
output_low(LED);
delay_ms(1000);
output_high(LED);
delay_ms(1000);
//printf("Envio\r\n");
//restart_wdt();
}
} |
.h
Code: | #include <18F25K20.h>
#device ADC=10
#FUSES NOWDT //No Watch Dog Timer
#use delay(internal=16MHz)
#use FIXED_IO( A_outputs=PIN_A5,PIN_A3,PIN_A2 )
#use FIXED_IO( C_outputs=PIN_C5,PIN_C3 )
//#use rs232(baud=115200,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8,stream=PORT1)
#define Ledrojo PIN_A2
|
|
|
|
|
|
You cannot post new topics in this forum You cannot reply to topics in this forum You cannot edit your posts in this forum You cannot delete your posts in this forum You cannot vote in polls in this forum
|
Powered by phpBB © 2001, 2005 phpBB Group
|